
Year 7 - Science - Summer Term - Biology - Key terms and Checklist

Keyword List	Definition	Biology term 3 checklist	\checkmark
Stamen	Contains the anther	Be able to label the parts of a flower	
Anther	Produces pollen (sex cell)		
Ovary	Where ovules are made	State the two types of pollination	
Ovule	Female sex cell in a plant	Explain how seeds are dispersed	
Stigma	Receives pollen		
Petals	Coloured/scented to attract pollinators	Be ale to describe what photosynthesis is	
Pollination	When pollen from anther is transferred to the stigma	Recall the equation for photosynthesis	
Fertilisation	When the nucleus of pollen grain fuses with the nucleus of the ovule		
Dispersal	When seeds are spread out from the parent plant	Describe the function of chloroplast	
Photosynthesis	The chemical process in which plants and alga use energy form the sun to make glucose	To describe the function of the roots	
Chloroplast	Organelles which are responsible for photosynthesis		
Chlorophyll	A green pigment inside chloroplast	Describe the adaptations of the leaf	
Stomata	Tiny holes on the underside of a leaf	Describe aerobic respiration	
Root hair cell	A specilaised cell which makes up the root of a plant		
Digestive system	Organ system responsible for digesting food.	Describe anerobic respiration	
Diet	Meals contains good amount of carbohydrates, protein, fiber, vitamins/minerals, fats		
Aerobic respiration	The process of producing energy using oxygen	Be able to label a diagram of the lungs	
Aerobic respiration	The process of producing energy without the use of oxygen	Describe the purpose of the alveoli	
Lungs	The organ responsible for breathing/ventilation	State what is produced in anaerobic respiration in	
Alveoli	Tiny air sacs in the lungs responsible for gas exchange	humans	
Fermentation	The process carried out by yeast to produce beer	State what is produced in anaerobic respiration in yeast	

Biology – Gas Exchange

Biology – Respiration

Respiration

Respiration is the process of **releasing energy** from **glucose**. It takes place in the **mitochondria** of the cell.

Aerobic Respiration

Aerobic respiration is producing energy **with oxygen**. We do this all the time (its what keeps us alive!)

The equation for respiration is:

Glucose + Oxygen \rightarrow Carbon dioxide + water (+energy)

Energy released is used in many ways including; muscle contraction, keeping warm and making proteins

Anaerobic Respiration

Anaerobic respiration is producing energy **without oxygen**. We do this all the time (its what keeps us alive!)

It happens in 2 situations:

In<u>humans</u> (during hard exercise)

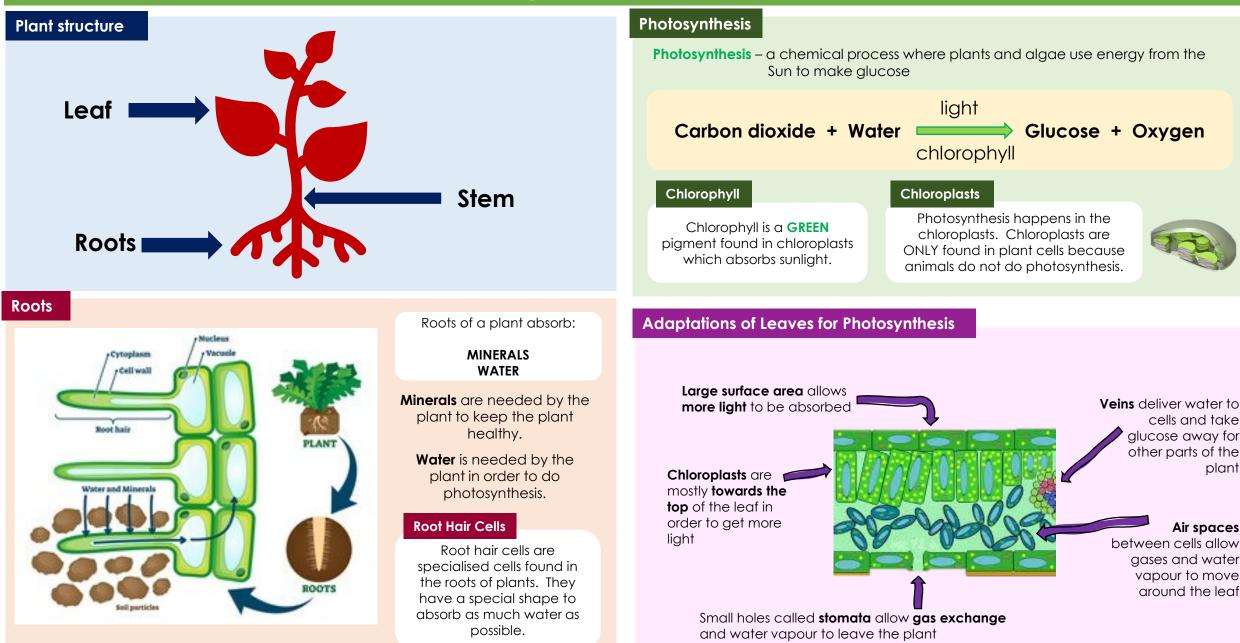
Glucose \rightarrow lactic acid (+energy)

Lactic acid causes pain in muscles.

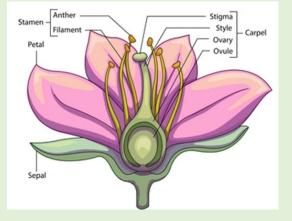
In<u>yeast (</u>a microorganism)

Glucose → ethanol + carbon + (+energy) dioxide

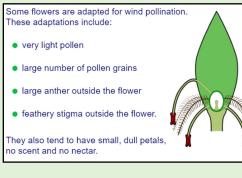
This process is called **fermentation.** It makes beer!



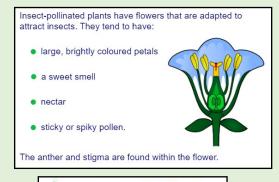
Ο


0

Biology – Photosynthesis



Biology - Plant reproduction


Flowers are the reproductive organs of plants. They produce the male and female sex cells (gametes).

Pollination occurs when the pollen is transferred from anther to stigma. The pollen can be transferred by wind or animals (usually insects).

Fertilisation is when the nucleus of the pollen fuses with the nucleus of the ovule. This produces a seed which will grow into new plant. Seeds are spread (dispersed) in various ways to avoid competition with the parent plant. Methods include: wind, water, animals (carried, buried, eaten) and explosion.

Biology – Digestion

Healthy diet and food groups

Journey of food Mouth \rightarrow oesophagus \rightarrow stomach \rightarrow small intestine \rightarrow large intestine \rightarrow rectum \rightarrow anus

Chemistry - Key terms and Checklist

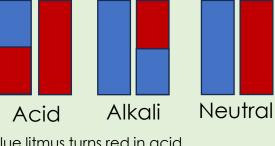
Keyword List	Definition
Acid	A substance which has a pH ranging from 0-6
Base	A substance which can neutralise an acid
Alkali	Are bases which can dissolve in water
Neutral/ Neutralisation	A substance which has a pH of 7
Concentrated	A substance which has more water particles then solute
Dilute	A substance which has less water particles then solute
рН	Ranges from 0-14 to show if a substance is an acid, alkali or neutral
Indicator	A substance to show the pH of another substance
Acid	A substance which has a pH ranging from 0-6

Chemistry term 3 checklist✓State the difference between an acid, alkali and baseUnderstand parts of the pH scale and give some examples of itemsDefine a neutralisation reactionName different saltsDescribe ways in which we can test pH

Chemistry – Acids and Alkalis

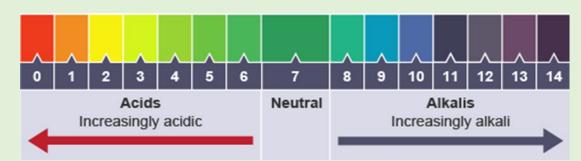
What are acids and bases?

Acid – Corrosive substance with a pH lower than 7.


Base – A substance that reacts with an acid to neutralise it and produce a salt.
Alkali – A base that dissolves in water.
Neutral – A substance that is not acid or alkaline.

Acids	Alkalis	Neutral
Vinegar	Soap	Water
Fruit Juice	Oven Cleaner	Cooking oil

pH Scale and Universal Indicator


Indicators

Indicators – A substance that will change colour depending on if a substance is acid or alkali. Litmus paper can be red or blue.

Blue litmus turns red in acid Red litmus turns blue in alklali

Universal indicator solution show what colour a certain pH is:

pH Scale – number scale from 0-14 telling us how acid or alkaline a substance is. Neutral substances are exactly pH 7 | Acids have a pH of less than 7 | Alkalis have a pH of more than 7.

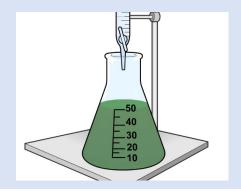
The further from 7 the stronger the acid or alkali.

Chemistry – Acids and Alkalis

Rules for Naming Salts

Salts always have **two** names. First name – metal taken from the base.

E.g. Salts made with **sodium** hydroxide will always start with **sodium**.


Second name – comes from the type of acid used.

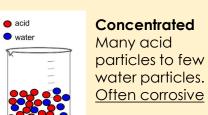
Hydrochloric acid – chloride Sulfuric acid – sulfate Nitric acid – nitrate

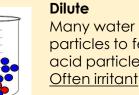
Making a Neutral Solution

To make a neutral solution you need to mix together exactly the right amount of acid and alkali.

An indicator is needed to know when we have added the right amount. Universal indicator will turn green.

Neutralisation Reactions


If you mix an acid and base together a neutralisation reaction occurs. A **neutral** solution is made.


Acid + Base \rightarrow Salt + Water

Acid + Metal \rightarrow Salt + Hydrogen

Acid + Carbonate \rightarrow Salt Water + Carbon dioxide

Concentrated and Dilute

Many water particles to few acid particles.

Physics – Key terms and Checklist

Keyword List	Definition	
Work done	is a measure of the energy transferred when a force acts over a distance.	
Power	is the amount of energy transferred or work done in certain time	
Thermal Energy	How much energy is stored in a substance due to the vibration of its particles	
Temperature	A measure of the average kinetic energy of particles	
Radiation	Transfer of thermal energy as a wave	
Convection	Transfer of thermal energy when particles in a fluid are heated.	
Thermal conductor	Material that allows heat to transfer through it quickly .	
Conduction	Transfer of thermal energy by the vibration of particles.	
Thermal Insulator	Material that only allows heat to travel through it slowly .	
Physics term 3 checklist		

Be able to identify energy stores and energy transfers Be able to calculate work

To be able to calculate power

can explain how a method of thermal insulation works in terms of conduction

I can sketch a graph to show the pattern of temperature change against time

can explain how a method of thermal insulation works in terms of convection

can sketch diagrams to show convection currents

can identify that radiation does not require particles

can describe which materials absorb/emit radiation

Physics – Energy stores and Transfers

Energy

Energy – can be in different 'stores'.

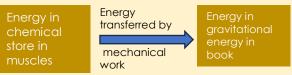
- Energy cannot be created or destroyed, but it can be transferred from one energy store to other energy stores.
- Energy is measured in Joules

Energy Stores

Kinetic store – is filled when an object speeds up, and it empties when an object slows down

Gravitational store - is filled when an object is raised, and it empties when an object falls or is lowered

Elastic store – is filled when it is stretched or compressed


Chemical store - is emptied during a chemical reaction when energy is transferred to the thermal store of the surroundings

Thermal store – is filled when a substance is heated, and it is emptied when the substance cools down

Energy Transfers

Energy can be transferred from one store to another in four ways:

Mechanical work - a force is applied to move an object, for example when a person lifts a book onto a high shelf

Electrical work - charges flow in the form of electricity, for example in a battery powered toy train

Energy transferred by toy car store in electrical work

Heat transfer – energy moves from the thermal store of a hotter object to the thermal store of a cooler object, for example when a handwarmer is used to warm up your hands.

nergy in nermal store	Energy transferred by	Energy in thermal sto hands
andwarmer	conduction	nanas

Radiation - when energy is transferred as a wave, for example a grill cooking food using infra-red radiation.

Energy in thermal	Energy transferred by	Energy i thermal of food
store in grill	Infrared radiation	

Physics – Work and Power, and Heating and Cooling

Work

Work - is a measure of the energy transferred when a force acts over a distance. Energy transferred = Work Work done equation

 $W = F \times d$

Conduction

Conduction is the method of **thermal** energy transfer through solids. When particles are heated, they gain energy and begin to vibrate. This causes them to collide with neighbouring particles and the energy is passed along.

heat conducts from warm to cold

Conductors and Insulators

Power

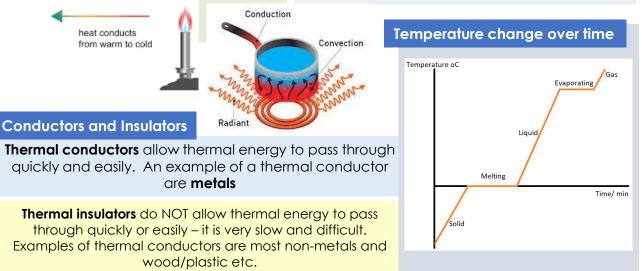
Power - is the amount of energy transferred or work done in certain time Power equation

P = W/t

Power in watts (W) = Work (J) \div Time (s)

Convection

Convection is the method of **thermal energy** transfer through fluids (liquids and gases). When particles are heated, they gain energy and begin to **vibrate**. Particles with more energy rise to the top and those with less energy sink. This process continues, forming a convection current, until all the fluid is heated.


Radiation

Conduction

are **metals**

wood/plastic etc.

Radiation is the method of thermal energy transfer via waves. This does not need particles as these waves can travel through a vacuum.

