Year 8 Physics

Keyword List

Permanent magnet – a object with a permanent magnetic field

Magnetic field – region around a magnet showing magnetism force

Longitudinal wave – a wave vibrating in a direction of motion

Transverse wave – a wave where the medium vibrates at right angles

Amplitude – how high one wave is

Frequency – number of waves per second

Crest – peak or top point of a transverse wave

Trough – bottom point of a transverse wave

Electromagnet – a magnet made using current/power source

Reflection – the bounce back of light without absorption

Refraction – change in direction of wave through a medium

Incidence ray – the ray of light coming into an object

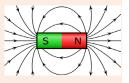
Reflected ray – the ray coming off an object

Physics term 1 checklist	
To understand properties of a permanent magnet	
Name magnetic materials	
State that magnets have both north and south poles	
Be able to draw a magnetic field around a magnet	
Describe how to make an electromagnet	
State ways we can increase the strength of an electromagnet	
State how sound travels	
Label a transverse wave	
Describe how to show reflection using a ray diagram	
Describe how refraction works using a ray diagram	
Be able to show the composition of white light using a glass prism and ray box	

Physics – Magnets

Magnets

Magnetic materials (Not all metals). Only three metals (Iron, Cobalt, Nickel) can be used in making magnets and be attracted by a magnet. Alloys containing iron are also magnetic (Steel).

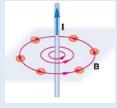

Magnets have two ends called the North and South Poles. Magnets also produce a force field which means they can produce a force on something without touching it. Called a non-contact force

North + North = Repel South + North = Attract

Magnetic fields and the Earth

Magnetic field lines show where magnetic forces act as well as the strength of the field. It always goes from North to South and strongest where the lines are closest.

The **Earth** is a giant magnet with a core made of **Iron** and **Nickel** with north and south pole opposite that of the geographic north and south.


Magnetic field lines can be produced using plotting compasses or iron fillings

Electromagnets

When current passes through a wire it creates a magnetic field which can be detected using a plotting compass.

When the wire is made into a coil, it can increase the strength of the magnetic field produced. If a soft iron is placed in the middle of the coil and current passed through

the wire, an
electromagnet is made
which can be turned
on or off to attract
magnetic materials
such as nails or not.

The strength of the electromagnet depend on a number of factors:

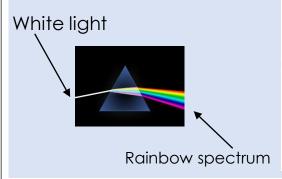
- the number of turns of the coil
- The magnetic material in the coil
- The amount of current flowing through the wire

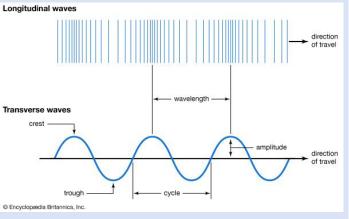
Uses of Electromagnets

Electromagnets have found many uses in industry and our homes. It has been used in **scrap** yards to pick engines and vehicles and bit of iron.

Loud speaker

It's also found applications in electric / magnetic doors, loud speakers, microphones and electric bells.

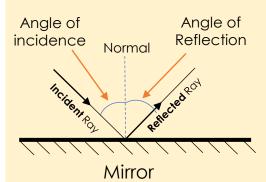

Physics - Waves



The Speed of Light

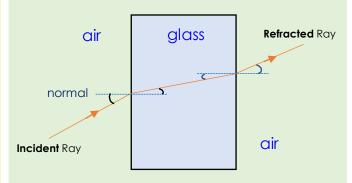
Light travels fastest in a vacuum – a vacuum doesn't contain anythina.

Speed of light = $3 \times 10^8 \text{ m/s}$



Reflection

Light rays reflect of different surfaces:


Angle of incidence = Angle of reflection

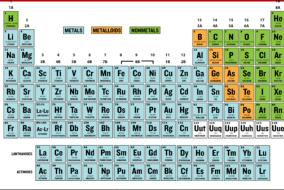
We use a protractor to measure angles.

Refraction

REFRACTION – when a wave changes direction (bends) as it crosses a boundary between one medium and another.

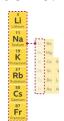
Light travels through transparent materials e.g. glass

Year 8 Chemistry



rear o Chemishy		
Keyword List	Chemistry term 1 checklist	
Malleable – the ability to bend a material into shape	Position of metals and non-metals on the periodic	
Conductor/insulator – to be able to/no be able to transfer heat or electricity	table	
Sonorous – an object which makes a ringing sound when hit	Properties of metal and non-metal elements	
Acid - a substance which has a pH ranging from 0-6	Describe the regardinity of Crown 1 cultarii ne chale	
Base – a substance which can neutralise an acid	Describe the reactivity of Group 1 alkali metals	
Alkali – are bases which can dissolve in water	Describe the reactivity of Group 7 the halogens	
Neutral/ Neutralisation – a substance which has a pH of 7		
Concentrated – a substance which has more water particles then solute	Describe the properties of oxides	
Dilute – a substance which has less water particles then solute	State the difference between an acid, alkali and base	
pH – ranges from 0-14 to show if a substance is an acid, alkali or neutral	Understand parts of the pH scale and give some examples of items	
Indicator – a substance to show the pH of another substance		
Chemical change – a reaction which cannot be reversed	Define a neutralisation reaction	
Physical change – a reaction which can be reversed	Name different salts	
Conservation of Mass – the law that the mass of a reaction is the same at the start and at the end	Describe the differences between chemical and	
Exothermic – a reaction which releases energy	physical changes	
Endothermic – a reaction which takes energy in	Be able to write equations for acid reactions	
Combustion – a reaction which burns fuel with oxygen to give carbon dioxide and water	Define the terms exothermic and endothermic	
Oxidation – a reaction where oxygen is added	reaction	
Decomposition – when a substance breaks down into smaller substances	State what is meant by conservation of mass	
Thermal decomposition - when a substance breaks down into smaller substances using heat	Describe reactions for thermal decomposition,	

oxidation and combustion


Chemistry – Metals and non-metals

Most elements in the periodic table are metals and these are found on the left-hand side of the periodic table

Property	Metals	Non-metals
Appearance	Shiny	Mostly dull
Melting/boiling point	High (solid at room temp. except mercury)	Generally low (about half are gases)
Density	High	Low
Strength	Strong and malleable (can bend)	Weak and brittle (shatter when hit)
Conduction	Good conductors of heat and electricity	Poor conductors (good insulators) except carbon
Sound when hit	Ringing sound (sonorous)	Non-sonorous

Metal oxides are bases. Group 1 – alkali metals Soft, shiny, low density (some float on water) and very reactive.

More reactive as you move down the group. React with water to form metal hydroxides. Non-metal oxides are often gases and make acidic solutions.

Group 7 - the halogens.

Less reactive as you move down the group. Low melting and boiling points.

gens. Figure 17 Chorine 5 Se W Kr Burner 17 Te Xe J Locate 85 Lv Og At

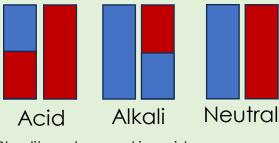
Chemistry – Acids and Alkalis

What are acids and bases?

Acid – Corrosive substance with a pH lower than 7.

Base – A substance that reacts with an acid to neutralise it and produce a salt.

Alkali – A base that dissolves in water.


Neutral – A substance that is not acid or alkaline.

Acids	Alkalis	Neutral
Vinegar	Soap	Water
Fruit Juice	Oven Cleaner	Cooking oil

Indicators

Indicators – A substance that willchange colour depending on if asubstance is acid or alkali.

Litmus paper can be red or blue.

Blue litmus turns red in acid Red litmus turns blue in alklali

pH Scale and Universal Indicator

Universal indicator solution show what colour a certain pH is:

pH Scale – number scale from 0-14 telling us how acid or alkaline a substance is. Neutral substances are exactly pH 7 | Acids have a pH of less than 7 | Alkalis have a pH of more than 7.

The further from 7 the stronger the acid or alkali.

Chemistry – Acids and Alkalis

Rules for Naming Salts

Salts always have **two** names. **First name** – **metal** taken from the **base**.

E.g. Salts made with **sodium** hydroxide will always start with **sodium**.

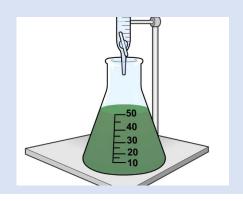
Second name – comes from the type of **acid** used.

Hydrochloric acid – chloride Sulfuric acid – sulfate Nitric acid – nitrate

Neutralisation Reactions

If you mix an acid and base together a **neutralisation** reaction occurs.

A **neutral** solution is made.

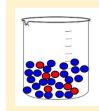

Acid + Metal
$$\rightarrow$$
 Salt + Hydrogen

Acid + Carbonate → Salt Water + Carbon dioxide


Making a Neutral Solution

To make a neutral solution you need to mix together **exactly** the right amount of acid and alkali.

An indicator is needed to know when we have added the right amount.
Universal indicator will turn **green.**



Concentrated and Dilute

Concentrated
Many acid
particles to few
water particles.
Often corrosive

Dilute

Many water particles to few acid particles.

Often irritant

Chemistry – Types of Reaction

Chemical and Physical Reactions

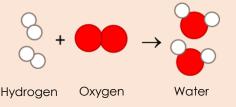
Physical Changes

In a physical reaction the atoms are simply moved or their pattern is rearranged.

They are reversible changes.

Example:

State changes



Chemical Changes

In a chemical reaction, the bonds between the atoms are broken and the atoms put back together differently.

This produces something new.
This is not easily reversible.

Example:

Conservation of Mass

CONSERVATION – something is being saved and is not lost

Conservation of Mass

We cannot create mass and we cannot lose mass, so whatever we start with must be there at the end.

This is called Conservation of Mass.

Example:

Iron + Oxygen → Iron oxide 0.52g + 1.14g → 1.66g

Thermal Decomposition

DECOMPOSITION – when something is broken down into smaller pieces

Thermal Decomposition

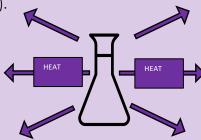
Thermal decomposition reactions are when a compound is broken down using heat.

You start with a compound and end with 2 or more products.

When a metal carbonate decomposes under heat, it produces a metal oxide and carbon dioxide.

Metal carbonate → Metal oxide + carbon dioxide

Chemistry – Types of Reaction


Exothermic and Endothermic Reactions

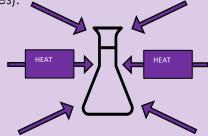
EXOTHERMIC REACTIONS

Reactions that release energy are called exothermic.

Exo = give out, exit -thermic = heat, heat energy

Therefore, exothermic reactions feel like they get hotter (their temperature increases).

Example:


- Camp fire
- Rusting
- Respiration

ENDOTHERMIC REACTIONS

Reactions that need to take in energy are called endothermic.

Endo = inside -thermic = heat, heat energy

Therefore, endothermic reactions feel like they get cooler (their temperature decreases).

Example:

- Photosynthesis
- · Cooking an egg
- Baking bread

Oxidation and Combustion

Oxidation

Oxidation is the addition of oxygen.

Example:
Rusting is an example of an oxidation reaction.

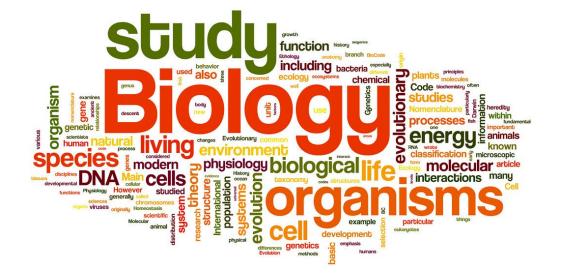
iron + oxygen → iron oxide

Combustion

When a fuel combusts (burns), it combines with oxyge from the air and makes a new substance.

The general word equation for this reaction is:

Fuel + oxygen → carbon dioxide + water



Year 8 Biology

Biology term 1 checklist	~
Understand what is meant by a healthy diet	
State the purpose of different diet food categories	
Understand the pathway of food in the digestive systems	
Describe the function of organs in digestion	
Understand the parts of the body involved in movement	
Name parts of the human skeleton	
Describe the purpose of muscles in movement	

Keyword List

Diet – the combination of food and drink an organism consumes

Protein – a biological molecule which help growth and repair

Fats - a biological molecule which is used as an energy store

Carbohydrates - a biological molecule used for energy, growth and repair

Vitamins – nutrients which help overall health

Minerals - nutrients which help overall health

Fiber – helps the digestive system

Digestive system/Digestion – the process of breaking down food

Oesophagus – the organ which carries food to the stomach

Liver – organ responsible for break down substances and storing glucose

Pancreas – organ responsible to control sugar

Small intestine - organ responsible for absorbing nutrients from food

Skelton – the basic unit which makes up most living organisms

Muscle – cover the skeleton and function to contract and relax

Ligaments – connect one bone to another bone

Femur – a human thigh bone

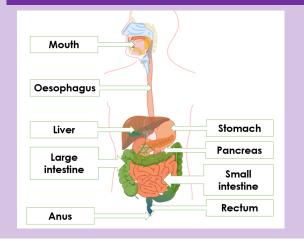
Pelvis – bone which makes up the hip

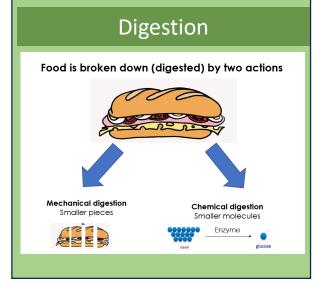
Ulna – lower arm bone

Humerus – upper arm bone

Rib cage – bones which protect the heart and lungs

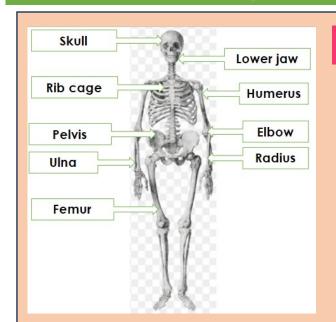
Tendons – connect bones to muscle


Biology – Digestion



Healthy diet and food groups

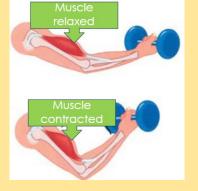
The digestive system



Journey of food

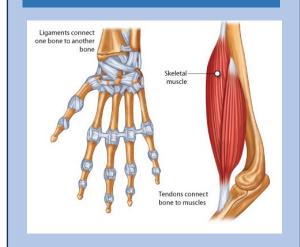
Mouth \rightarrow oesophagus \rightarrow stomach \rightarrow small intestine \rightarrow large intestine \rightarrow rectum \rightarrow anus

Biology – Movement


The skeleton

The skeleton has 4 main functions:

- Support
- Protection of the organs
- Movement
- Making blood cells


Where bones meet there are joints such as hinge joints, ball and socket joints and fused joints.

Muscles

Muscles move the bones in the skeleton by contracting and relaxing

Ligaments and tendons

4 R's And Scientific Vocabulary

4Rs: Rehears

Revision is a very important part of education and here at Highfields we break it down into the 4 R's:

- 2. Reduce summarise content learnt into smaller pieces
- 3. e.g. mind map, flashcards, abbreviation and acronyms
- 4. Rehearse practice learning the information
- 5. Retrieve bringing back and remembering content learnt in the past 🎉

4Rs: Reduce

Key scientific vocabulary which is important throughout all years of Science and during practical work:

- → Independent variable → variable which is purposely changed in an experiment.
- + Dependent variable -> variable which is measured in an experiment.
- → Control variable → variables which are kept the same throughout an experiment.
- → Reliability → how trustworthy the result are. We increase this by repeating an experiment.
- + Accuracy -> how close a result is to its true value.
- + Validity -> How suited the method used in an experiment is for the purpose.
- → Average → adding up the values and dividing the value by how many they are
- → Anomaly → an odd result, which does not fir the pattern of results.
- → Data → the results from an experiment

